Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $x-\frac{1}{2}$
$-\frac{27}{8}$
$\frac{27}{8}$
$7$
$8$
Find the value of $k$, if $x -1$ is a factor of $p(x)$ in this case : $p(x)=x^{2}+x+k$.
Write the coefficients of $x^2$ in each of the following :
$(i)$ $2+x^{2}+x $
$(ii)$ $2-x^{2}+x^{3}$
Evaluate the following products without multiplying directly : $104 \times 96$
Find the zero of the polynomial : $p(x)=a x,\,\, a \neq 0$
Factorise the following using appropriate identities : $9 x^{2}+6 x y+y^{2}$